Willkommen auf KRISTALL-GLäSER.DE

kristall-gläser.de bietet Ihnen weiterführende Links auf Webseiten zum Thema kristall-gläser

Startseite > Glas

'''Glas''' (von germanisch ''glasa'' ?das Glänzende, Schimmernde?, auch für ?Bernstein?) ist ein Sammelbegriff für eine Gruppe amorpher Feststoffe. Die meisten Gläser bestehen hauptsächlich aus Siliciumdioxid, wie Trink- oder Fenstergläser; diese ? meist lichtdurchlässigen ? Silikat-Gläser haben wirtschaftlich die weitaus größte Bedeutung aller Gläser. Auch amorph erstarrte Metalle sind Gläser. Gläser aus organischen Materialien sind beispielsweise der natürliche Bernstein oder viele Kunststoffe wie Acrylglas. Durch sehr schnelles Abkühlen aus dem flüssigen oder gasförmigen Zustand kann nahezu jeder Stoff in ein (metastabiles) Glas überführt werden. Es gibt eine sehr große Anzahl von Gläsern verschiedener Zusammensetzungen, die aufgrund ihrer Eigenschaften von wirtschaftlichem oder wissenschaftlichem Interesse sind. Wegen der breiten Palette von Anwendungen für Gläser gibt es auch vielfältige Techniken zu deren Erzeugung und Formgebung. Viele dieser Techniken sind bereits sehr alt und werden ? von ihrem Grundprinzip her unverändert ? auch heute noch industriell umgesetzt.

Definition

Glas ist eine , das ist der Übergangsbereich zwischen Schmelze und Feststoff, liegt bei vielen Glasarten um 600?°C.

Trotz des nicht definierten Schmelzpunkts sind Gläser Festkörper. Allerdings werden sie in der Fachterminologie als ?nichtergodisch? bezeichnet. Das heißt, ihre Struktur befindet sich nicht im thermodynamischen Gleichgewicht. Viele Kunststoffe, wie zum Beispiel Plexiglas, fallen wegen ihres amorphen Aufbaus und eines Glasübergangs ebenfalls in die Kategorie Gläser, obwohl sie eine völlig andere chemische Zusammensetzung aufweisen als Silikatgläser. Sie werden daher oft als organisches Glas bezeichnet.

Der Unterschied zwischen Gläsern und anderen amorphen Feststoffen liegt darin, dass Gläser beim Erhitzen im Bereich der Glasübergangstemperatur in den flüssigen Zustand übergehen, während nicht glasartige amorphe Substanzen dabei kristallisieren.

Aus der Beobachtung der Eigenschaften der Gläser und ihrer Struktur wurden viele Versuche angestrengt, eine umfassende Definition für den Begriff Glas zu geben. Der anerkannte Glaswissenschaftler , das ebenfalls ein nichtkristalliner Festkörper ist, nicht als Glas aus. Die Beschränkung der ASTM-Definition auf anorganische Substanzen wurde von Scholze als bedenklich bewertet, da mittlerweile einige organische Gläser bekannt sind.<ref name="Scholze">Horst Scholze: ''Glas. Natur, Struktur und Eigenschaften'', 3. Auflage.</ref>

Einteilung der Gläser

Nach Art der Genese:Neben ''künstlichen'' finden sich auch ''natürliche Gläser:'' Obsidian und Bimsstein sind vulkanischen Ursprungs,<ref name="Glastechnik 1 198">Helmut A. Schaeffer, ''Glastechnik ? Band 1 Werkstoff Glas.'' S. 198 f.</ref> Impaktgläser und Tektite entstehen durch Meteoriteneinschlag,<ref name="Glastechnik 1 204">Helmut A. Schaeffer, ''Glastechnik ? Band 1 Werkstoff Glas.'' S. 204 ff.</ref> Fulgurite bei Blitzeinschlag,<ref name="Glastechnik 1 208">Helmut A. Schaeffer, ''Glastechnik ? Band 1 Werkstoff Glas.'' S. 208 f.</ref> Trinitit durch Atombombenexplosion und der Friktionit Köfelsit durch Bergstürze.<ref name="koefelsit">
Nach Art des ?Chemismus?: Der größte Teil der heute hergestellten Gläser sind Kalk-Natron-Gläser, welche zur Gruppe der Silikatischen Gläser gehören. Alle Gläser dieser Gruppe haben gemeinsam, dass ihr Netzwerk hauptsächlich aus Siliziumdioxid (SiO2) gebildet wird. Durch Zugabe weiterer Oxide wie beispielsweise Aluminiumoxid oder verschiedener Alkalioxide entstehen die Alumo- oder Alkali-Silikatgläser. Für die Einordnung entscheidend ist, welches Oxid mengenmäßig das zweithäufigste im silikatischen Grundglas ist. Ein Silikatglas ohne weitere Bestandteile ? also reines SiO2 ? wird als Kiesel- oder Quarzglas bezeichnet.<ref name="Vogel" />
Nach der Grundform des Produkts und dem Produktionsverfahren:
Die Glasindustrie wird gewöhnlich in Hohlglas-, Flachglas- und Spezialglasherstellung gegliedert, auch wenn diese einfache Gliederung nicht alle Bereiche der Glasindustrie erfasst. Hohlglas bezeichnet in der Regel Behältnisse für Lebensmittel, wie beispielsweise Flaschen und Konservengläser. Diese Massenprodukte werden maschinell im Press-Blas- oder Blas-Blas-Prozess gefertigt. Glasbausteine und Trinkgläser werden nur durch einen Pressvorgang geformt. Höherwertige Produkte wie Weingläser, werden als sogenanntes Tableware bezeichnet und meist in einem aufwendigen mehrstufigen Prozess hergestellt. Im Gegensatz zu den Glasflaschen werden sie nicht mit Hilfe von IS-Maschinen, sondern sogenannten Rotationsblasmaschinen produziert. Für Glühlampen ist ein besonderes Verfahren notwendig, welches sich besonders durch die hohen Produktionsgeschwindigkeiten der Ribbonmaschine auszeichnet. Rohrglas kann nach verschiedenen Verfahren hergestellt werden, welche sich durch die unterschiedlichen Abmessungen des herzustellenden Halbzeugs unterscheiden. Flachglas wird je nach Produktionsverfahren Floatglas oder Walzglas genannt. Das Grundprodukt ist eine Glasscheibe. Endprodukte sind z.?B. Automobilglas, Spiegel, Temperglas oder Verbundglas, welche auf verschiedenste Weise nachbearbeitet wurden. Anwendungen in Form von Fasern umfassen Lichtwellenleiter, Glaswolle und glasfaserverstärkten Kunststoff sowie Textilglas. Mundgeblasene Gläser existieren praktisch nur noch im Kunstgewerbe sowie bei kostspieligen Vasen und Weingläsern.<ref name="Glastechnik 2 13">Helmut A. Schaeffer: ''Glastechnik ? Band 2 Hohlglas.'' S. 13?20.</ref><ref name="Glastechnik 3 11">Helmut A. Schaeffer: ''Glastechnik ? Band 3 Flachglas.'' S. 11?32 ff.</ref><ref name="Glastechnik 4 13">Helmut A. Schaeffer: ''Glastechnik ? Band 4 Spezialglas.'' S. 13?18.</ref>
Nach ihren hergebrachten Handelsnamen: Antikglas, Diatretglas, optische Gläser wie Kronglas und Flintglas (Bleiglas), Hyalithglas (opakes Glas, im 19. Jahrhundert benutzt für Tafel- und Pharmaglas), Kryolithglas (opakes, weißes Fluoridglas).<ref name="Glastechnik 2 22">Helmut A. Schaeffer: ''Glastechnik ? Band 2 Hohlglas.'' S. 22?32.</ref>
Nach ihren Markennamen als Gattungsbegriff:
Häufig hat sich der Markenname eines Glasherstellers als Sammelbegriff für verschiedene Produkte eines oder sogar mehrerer Glashersteller eingebürgert. Ceran wird sehr oft als Synonym für Glaskeramiken oder Kochfelder verwandt. Jenaer Glas steht umgangssprachlich oft für alle Varianten von hitzefestem Borosilikatglas. Im angelsächsischen Raum hat sich der Markenname Pyrex von Corning für diese Sorte von Gläsern eingebürgert.<ref name="Glastechnik 2 13?32">Helmut A. Schaeffer: ''Glastechnik ? Band 2 Hohlglas.'' S. 13?32.</ref>
Nach ihrer Verwendung: Die wichtigsten .<ref name="Glastechnik 3 140">Helmut A. Schaeffer: ''Glastechnik ? Band 3 Flachglas.'' S. 140.</ref>

Eigenschaften

Struktur

Obwohl Glas zu den ältesten Werkstoffen der Menschheit gehört, besteht noch Unklarheit in vielen Fragen des atomaren Aufbaus und seiner Struktur. Die mittlerweile allgemein anerkannte Deutung der Struktur ist die Netzwerkhypothese, die 1932 von W. H. Zachariasen aufgestellt und B.E. Warren 1933 experimentell bekräftigt wurde. Diese besagt, dass im Glas grundsätzlich dieselben Bindungszustände oder Grundbausteine wie in einem Kristall vorliegen müssen. Im Falle silikatischen Glases also die SiO4-Tetraeder, welche aber im Gegensatz zu einem Quarzkristall ein regelloses Netzwerk bilden. Um die Glasbildung weiterer chemischer Verbindungen vorhersagen zu können, stellte Zachariasen weitere Regeln in seiner Netzwerkhypothese auf. Unter anderem muss ein Kation in einer Verbindung relativ klein im Verhältnis zum Anion sein. Die sich bildenden Polyeder aus den Anionen und Kationen dürfen nur über deren Ecken verbunden sein. Werden die betrachteten Verbindungen auf Oxide beschränkt, so erfüllen unter anderen Phosphorpentoxid (P2O5), Siliziumdioxid (SiO2) und Bortrioxid (B2O3) diese Bedingungen zur Netzwerkbildung und werden daher als Netzwerkbildner bezeichnet.<ref name="Scholze" />

Wie die zweidimensionalen Abbildungen des Quarzes und des Quarzglases zeigen, liegt der Unterschied in der Regelmäßigkeit des atomaren Aufbaus. Beim Quarz, welcher ein Kristall ist, liegt ein Gitteraufbau vor ? beim Quarzglas hingegen ein regelloses Netzwerk von aneinandergereihten SiO4-Tetraedern. Zur besseren Anschaulichkeit ist die vierte Oxidbindung, die aus der Zeichenebene hinaus ragen würde, nicht dargestellt. Die Bindungswinkel und Abstände im Glas sind nicht regelmäßig und die Tetraeder sind ebenfalls verzerrt. Der Vergleich zeigt, dass Glas ausschließlich über eine Nahordnung in Form der Tetraeder verfügt, jedoch keine kristalline Fernordnung aufweist. Diese fehlende Fernordnung hat die sehr schwierige Analyse der Glasstruktur zur Folge. Insbesondere die Analyse in mittlerer Reichweite, also die Verbindungen mehrerer Grundformen (hier den Tetraedern), ist Gegenstand der Forschung und wird zu den heutigen größten Problemen der Physik gezählt.<ref name="Scholze" />

Das Material, das diese Grundstruktur des Glases bestimmt, heißt Netzwerkbildner. Neben dem erwähnten Siliciumoxid können auch andere Stoffe Netzwerkbildner sein, wie Bortrioxid und auch nichtoxidische wie Arsensulfid. Einkomponentengläser sind jedoch sehr selten. Das trifft auch auf reines Quarzglas zu, das als einziges Einkomponentenglas wirtschaftliche Bedeutung hat. Die Ursache hierfür sind die enorm hohen Temperaturen (über 2000?°C) welche zu dessen Erzeugung notwendig sind.<ref name="Scholze" /><ref name="Schaeffer 4 238">Helmut A. Schaeffer: ''Glastechnik ? Band 4, Spezialglas'', S. 238 f.</ref>

Weitere Stoffe binden sich anders in das Glasnetzwerk der Netzwerkbildner ein. Hier werden Netzwerkwandler und Stabilisatoren (oder auch Zwischenoxide) unterschieden.<ref name="Scholze" />

Netzwerkwandler werden in das vom Netzwerkbildner gebildete Gerüst eingebaut. Für gewöhnliches Gebrauchsglas ? Kalk-Alkali-Glas (gebräuchlicher ist allerdings der engere Terminus ''Kalk-Natron-Glas'') ? sind dies Natrium- bzw. Kaliumoxid und Calciumoxid. Diese Netzwerkwandler reißen die Netzwerkstruktur auf. Dabei werden Bindungen des Brückensauerstoffs in den Siliciumoxid-Tetraedern aufgebrochen. Anstelle der Atombindung mit dem Silicium geht der Sauerstoff eine deutlich schwächere Ionenbindung mit einem Alkaliion ein.<ref name="Scholze" />

Zwischenoxide wie Aluminiumoxid können als Netzwerkbildner und -wandler fungieren, das heißt, sie können ein Glasnetzwerk verfestigen (stabilisieren) oder genau wie die Netzwerkwandler die Strukturen schwächen. Ihre jeweilige Wirkung in einem Glas ist stets abhängig von einer Reihe von Faktoren. Allerdings sind Zwischenoxide allein nicht zur Glasbildung fähig.<ref name="Scholze" />

Übergang von der Schmelze zum festen Glas

Während bei kristallinen Materialien der Übergang von der Schmelze zum Kristall durch langsame Abkühlung erfolgt, ist dieser Vorgang bei Gläsern so rasch, dass sich keine Kristallstrukur bilden kann. Den Übergangsbereich von einer Schmelze zum Glas wird Transformations''bereich'' genannt.<ref name="Vogel" />
Diese Abfolge von Transformationsbereich und Glasübergang ist charakteristisch für alle Gläser, auch solche, die wie Plexiglas aus Kohlenwasserstoffen bestehen. Der amorphe, viskose Zustand der Schmelze im Transformationsbereich wird für die Bearbeitung von Glas durch Glasbläserei ausgenutzt. Er erlaubt eine beliebige Verformung, ohne dass Oberflächenspannung und Gravitation das Werkstück sofort zerfließen lassen.<ref name="Jebsen" />

Physikalische Eigenschaften

{| class="wikitable float-right"
!Eigenschaft
! Wert
! Einheit
|----
|Dichte eines ''Kalk-Natron-Glas''
| 2500
| kg/m³
|----
|Dichte eines ''Schwerflintglases (SF59)''<ref name="Glastechnik 1 171">Helmut A. Schaeffer: ''Glastechnik ? Band 1, Werkstoff Glas.'' S. 171.</ref>
| 6260
| kg/m³
|----
|Wärmeleitfähigkeit ''Kalk-Natron-Glas''
| 0,80
| W/(K·m)
|----
|Wärmeleitfähigkeit ''Quarzglas''<ref name="heraeus 1"></ref>
| 1,38
| W/(K·m)
|----
|Wärmeleitfähigkeit ''Zerodur''
| 1,46
| W/(K·m)
|----
|Elektrische Leitfähigkeit
| bis ca. 600?°C Isolator
||----
|Thermische Ausdehnung ''Kalk-Natron-Glas''<ref name="Glastechnik 1 122">Helmut A. Schaeffer: ''Glastechnik ? Band 1, Werkstoff Glas.'' S. 122.</ref>
| 9,0·10?6
| 1/K
|----
|Thermische Ausdehnung ''Borosilikatglas 3.3''<ref name="Glastechnik 1 122" />
| 3,3·10?6
| 1/K
|----
|Thermische Ausdehnung ''Quarzglas''<ref name="Glastechnik 1 122" />
| 0,57·10?6
| 1/K
|----
|Thermische Ausdehnung ''Zerodur''
| < 0,1·10?6
| 1/K
|----
|Zugfestigkeit
| 30
| MPa
|----
|Druckfestigkeit
| 900
| MPa
|----
|E-Modul
| 70.000
| MPa
|----
|Wärmekapazität
| 0,8
| kJ/(kg·K)
|----
|Transmission (Physik)
| 0?100
| %
|----
|Brechungsindex (siehe Optisches Glas)
| 1,5 bis 1,9
|

|----
|}

Die im allgemeinen Sprachgebrauch tragende Eigenschaft von Glas ist die optische Durchsichtigkeit. Die optischen Eigenschaften sind so vielfältig, wie die Anzahl der Gläser. Neben klaren Gläsern, die in einem breiten Band für Licht durchlässig sind, kann die Zugabe von speziellen Materialien zur Schmelze die Durchlässigkeit blockieren. Zum Beispiel werden damit optisch klare Gläser für infrarotes Licht undurchdringbar, die Wärmestrahlung ist blockiert. Die bekannteste Steuerung der Durchlässigkeit ist die Färbung. Die verschiedensten Farben können erzielt werden. Andererseits gibt es undurchsichtiges Glas, das schon aufgrund seiner Hauptkomponenten oder der Zugabe von Trübungsmitteln opak ist.<ref name="Vogel" />

Gebrauchsglas hat eine Dichte von ca. 2500?kg/m³ ''(Kalk-Natron-Glas)''.<ref name="Dichte">
Glas ist weitgehend resistent gegen Chemikalien. Eine Ausnahme ist Flusssäure; sie löst das Siliciumdioxid und wandelt es zu Hexafluorokieselsäure.<ref name="Scholze" />

Wegen seiner Natur als unterkühlte Schmelze kann Glas auch in sehr begrenztem Umfang fließen. Dieser Effekt macht sich aber erst bei höheren Temperaturen bemerkbar. Die häufige Behauptung, dass Kirchenfenster unten dicker seien, weil das Glas im Laufe der Jahrhunderte durch die Schwerkraft nach unten geflossen sei, ist falsch, derartige Fließvorgänge hätten bei Raumtemperatur Jahrmillionen benötigt. Die Verdickung ist auf das damalige Produktionsverfahren (Zylinderblasen) zurückzuführen.

Produktionsprozesse

Gemenge

Das Kalk-Natron-Glas ist das vorherrschende Massenglas und macht circa 90 % des weltweit produzierten Glases aus.<ref name="Glastechnik 1 36">Helmut A. Schaeffer: ''Glastechnik ? Band 1, Werkstoff Glas.'' S. 38.</ref> Grundsätzlich besteht dieses Glas aus Siliziumdioxid (SiO2), Natriumoxid (Na2O) und Calciumoxid (CaO). Im alltäglichen Gebrauchsglas, welches nach wie vor zur Familie der Kalk-Natron-Gläser gehört, werden aber verschiedene weitere Bestandteile zugegeben, um die Gebrauchseigenschaften und Herstellungsbedingungen zu optimieren. Geringfügige Verunreinigungen der Rohstoffe, die mit den normalen Qualitätsanforderungen an das Gebrauchsglas vereinbar sind, stellen ebenfalls Quellen für weitere (unbeabsichtigte) Glasbestandteile dar. In normalem Glas, wie es zur Fertigung von farblosen Behältern oder Flachglas verwendet wird, finden sich oft gewisse Mengen Aluminiumoxid, Magnesiumoxid und Kaliumoxid, welche bewusst zugegeben werden. Durch Verunreinigungen finden sich weiterhin kleinere Mengen von Eisenoxiden, Titanoxid und beispielsweise Chrom(III)-oxid im Glas wieder.<ref name="Glasrohstoffe 82">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 82.</ref> Die häufigsten Rohstoffe in der Massenglasproduktion können der nachfolgenden Liste entnommen werden:

  • Quarzsand ist ein fast reiner SiO2-Träger zur Netzwerkbildung. Wichtig ist, dass der Sand nur einen geringen Anteil an Fe2O3 besitzen darf (< 0,05 %), da sonst bei Weißglas störende Grünfärbungen auftreten.<ref name="Glasrohstoffe 94">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 94</ref><ref name="Glasrohstoffe 82" /> Dieser Rohstoff macht mit über 70 % massenmäßig den größten Teil des Gemenges aus, und ist eine der Hauptquellen für Verunreinigungen.<ref name="Glastechnik 1 195">Helmut A. Schaeffer: ''Glastechnik ? Band 1, Werkstoff Glas.'' S. 195 f.</ref>
  • ist Läutermittel zur Reduzierung des Blasengehaltes).<ref name="Glasrohstoffe 173">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 173.</ref><ref name="Glastechnik 1 195" />
  • Pottasche (K2CO3) liefert Kaliumoxid für die Schmelze, das wie Natriumoxid als Netzwerkwandler und Flussmittel dient.<ref name="Glastechnik 1 195" /><ref name="Glasrohstoffe 111" />
  • Feldspat (NaAlSi3O8) trägt neben SiO2 und Na2O auch Tonerde (Al2O3) in das Gemenge ein. Diese führt zu einer Erhöhung der chemischen Beständigkeit gegenüber Wasser, Nahrungsmitteln und Umwelteinflüssen.<ref name="Scholze" /><ref name="Glasrohstoffe 156">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 156.</ref>
  • Kalk dient als Netzwerkwandler. Während der Schmelze zersetzt er sich zu Kohlendioxid und Calciumoxid. CaO erhöht in mäßiger Zugabe (10?15 %) die Härte und chemische Beständigkeit des Endproduktes.<ref name="Glasrohstoffe 133">Joachim Lange, ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 133 ff.</ref><ref name="Scholze" />
  • Dolomit ist ein Träger für CaO und MgO. Magnesiumoxid wirkt auf die Schmelze ähnlich wie Calciumoxid. Ein zu hoher MgO-Gehalt im Glas kann jedoch die Liquidustemperatur unerwünscht erhöhen und zu Entglasungen führen.<ref name="Glasrohstoffe 136">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 136</ref>
  • Altglas oder Eigenscherben aus dem Produktionsbruch werden ebenfalls dem Gemenge wieder zugegeben. Altglas aus dem Glasrecycling geht vor allem in die Behälterglasindustrie, denn Glasflaschen bestehen heute im Schnitt zu rund 60 % aus Altglas, grüne Flaschen aus bis zu 95 %,<ref name="Glastechnik 1 218">Helmut A. Schaeffer: ''Glastechnik ? Band 1, Werkstoff Glas.'' S. 218 f.</ref><ref>

Für Spezialgläser kommen auch Mennige, Borax, Bariumcarbonat und seltene Erden zum Einsatz.<ref name="Glasrohstoffe 99">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 99 ff.</ref><ref name="Glasrohstoffe 121">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 121 f.</ref><ref name="Glasrohstoffe 126">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 126 ff.</ref><ref name="Glasrohstoffe 140">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl., S. 140 ff.</ref>

Schmelze

Die Glasschmelze lässt sich in drei Phasen unterteilen:
  • Sie beginnt mit der Rauschmelze, die das Erschmelzen des Gemenges und seine Homogenisierung umfasst.
  • Im Anschluss erfolgt die Läuterung, in der die Gase ausgetrieben werden.
  • Zuletzt wird die geläuterte Schmelze auf die gewünschte Formgebungstemperatur abgekühlt (?Abstehen des Glases?).<ref name="Kitaigorodski 119">I.I. Kitaigorodski: ''Technologie des Glases.'' 2. Aufl. S. 119 ff.</ref>

Bei chargenweise arbeitenden Tageswannen und Hafenöfen geschehen diese Schritte nacheinander in demselben Becken.<ref name="Trier 240">Wolfgang Trier: ''Glasschmelzöfen.'' S. 240</ref><ref name="Trier 244">Wolfgang Trier, ''Glasschmelzöfen.'' S. 244.</ref> Dieses historische Produktionsverfahren findet heute nur noch bei kunsthandwerklicher Produktion und speziellen, optischen Gläsern in geringen Mengen statt. Im industriellen Maßstab finden ausschließlich kontinuierlich arbeitende Öfen Verwendung.<ref name="Trier 1">Wolfgang Trier: ''Glasschmelzöfen.'' S. 1.</ref> Hier ist die Abfolge obiger Schritte nicht zeitlich, sondern räumlich getrennt, auch wenn die einzelnen Abschnitte fließend ineinander übergehen.<ref name="Trier 240" /> Die Menge des zugeführten Gemenges muss derjenigen der Glasentnahme entsprechen. Die notwendige Energie zum Erschmelzen des Glases kann durch fossile Brennstoffe oder elektrische Energie, mittels Stromdurchgang durch die Schmelze, erbracht werden.

Das Gemenge wird der Schmelzwanne mit einer Einlegemaschine am Einlegevorbau, dem Doghouse, aufgegeben. Da das Gemenge eine geringere Dichte als die Glasschmelze besitzt, schwimmt dieses auf der Schmelze und bildet den sogenannten Gemengeteppich.<ref name="Trier 150">Wolfgang Trier: ''Glasschmelzöfen.'' S. 150 f.</ref><ref name="Kitaigorodski 119" /> Bei Temperaturen von ca. 1400?°C und mehr schmelzen die verschiedenen Bestandteile langsam auf. Einige der Gemengebestandteile können zusammen , die Eindüsung von Luft oder Gasen in die Schmelze, unterstützt werden.<ref name="Trier 164">Wolfgang Trier: ''Glasschmelzöfen.'' S. 164.</ref>

Im Läuterbereich, der dem Schmelzbereich unmittelbar folgt, und häufig auch durch einen Wall in der Schmelze von diesem getrennt ist, werden in der Schmelze verbliebene Gase ausgetrieben.<ref name="Kitaigorodski 144">I. I. Kitaigorodski: ''Technologie des Glases.'' 2. Aufl. S. 144 ff.</ref>
Zu diesem Zweck wird dem Gemenge zuvor ein sogenanntes Läutermittel zugegeben. Dieses Läutermittel zersetzt sich bei einer bestimmten Temperatur unter Gasbildung. Aufgrund von Partialdruckdifferenzen diffundieren nun Gase aus der Schmelze in die Läutermittel-Gasblasen ein, welche dadurch anwachsen und aufsteigen. Um diesen Prozess in wirtschaftlich vertretbaren Zeiten durchführen zu können, herrschen im Läuterteil einer Glasschmelzwanne ähnlich hohe Temperaturen wie im Schmelzteil, weil eine zu hohe Viskosität der Schmelze das Aufsteigen der Gasblasen stark verlangsamen würde. Da die Läuterung bestimmend für die Glasqualität ist, gibt es vielfältige unterstützende Maßnahmen.<ref name="Kitaigorodski 144" /><ref name="Glasrohstoffe 166">Joachim Lange: ''Rohstoffe der Glasindustrie.'' 3. Aufl. S. 166 ff.</ref>

Dem Läuterbereich schließt sich die baulich klar getrennte Arbeitswanne an. Da für die Formgebung niedrigere Temperaturen als zur Schmelze und Läuterung nötig sind, muss das Glas vorher abstehen, das Gefäß heißt daher auch ''Abstehwanne''. Der Kanal, der Schmelzwanne und Arbeitswanne verbindet, wird ''Durchlass'' genannt und arbeitet nach dem Siphon?prinzip. Bei Flachglaswannen sind Schmelz- und Arbeitswanne nur durch eine Einschnürung getrennt, da ein Durchlass eine optische Unruhe im Fertigprodukt entstehen ließe.<ref name="Trier 7">Wolfgang Trier: ''Glasschmelzöfen.'' S. 7 ff.</ref>

Von der Arbeitswanne fließt das Glas weiter zum Entnahmepunkt, wo dann die Formgebung stattfindet. Bei der Produktion von Hohlglas sind dieses die Speiser oder Feeder. Hier werden Tropfen erzeugt, die über ein Rinnensystem in darunter stehende Glasmaschinen geleitet werden. Bei der Flachglasherstellung nach dem Floatglasverfahren fließt das Glas über einen Lippstein in das Floatbad.<ref name="Trier 3">Wolfgang Trier: ''Glasschmelzöfen.'' S. 3 ff.</ref><ref name="Glastechnik 2 72">Helmut A. Schaeffer: ''Glastechnik ? Band 2, Hohlglas'' S. 72 ff.</ref>

Formgebung

Je nach Produkt wird Glas unterschiedlich geformt. Die Formung erfolgt durch Pressen, Blasen, Schleudern, Spinnen, Walzen oder Ziehen:
  • ''Hohlglas'' wird in mehreren Verfahren durch Pressen, Blasen, Saugen und Kombinationen dieser Techniken hergestellt. Hier dominiert die IS-Maschine, die im Blas-Blas- oder Press-Blas-Verfahren arbeitet. Für höherwertige Tafelware kommen Press-Blas-Verfahren zum Einsatz, die karussellförmig arbeiten und als Rundläufer oder Rotationsblasmaschine bezeichnet werden.<ref name="Glastechnik 2 88">Helmut A. Schaeffer: ''Glastechnik ? Band 2, Hohlglas.'' S. 88 ff.</ref>
  • ''kontinuierliche Glasfasern'' werden durch Spinnen im so genannten TEL-Verfahren produziert<ref name="Giegerich 394">W. Giegerich, W. Trier: ''Glasmaschinen.'' S. 394 f.</ref>
  • ''Glasfasern'' für beispielsweise Glaswolle werden erzeugt indem sie durch ein Sieb geschleudert werden<ref name="Giegerich 389">W. Giegerich, W. Trier: ''Glasmaschinen.'' S. 89 ff.</ref>
  • ''Flachglas'' wird hauptsächlich im Floatverfahren hergestellt, kann aber auch nach verschiedenen älteren Verfahren gezogen, gewalzt oder gegossen werden. Manufakturen bieten seit einiger Zeit auch wieder vermehrt handgeblasenes Flachglas an, das Antikglas (oder in Anlehnung an seine Herstellungsmethode auch ''Zylinderglas'') genannt wird.<ref name="Giegerich 139">W. Giegerich, W. Trier: ''Glasmaschinen.'' S. 139 ff.</ref><ref name="Glastechnik 3 14">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 14.</ref><ref name="Glastechnik 3 51">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 51 f.</ref>
  • ''Rohrglas'' wird durch verschiedene kontinuierliche Ziehverfahren hergestellt, großformatige Glasrohre werden in einem speziellen Schleuderverfahren erzeugt.<ref name="Giegerich 341">W. Giegerich, W. Trier: ''Glasmaschinen.'' S. 341.</ref>

Kühlung

In jedem Glasgegenstand entstehen bei der Formgebung mechanische Spannungen als Folge einer Zwangsformgebung oder Dehnungsunterschiede im Material aufgrund von Temperaturgradienten.<ref name="Jebsen" />

Für jedes Glas lässt sich ein Kühlbereich festlegen, welcher von der sogenannten ''oberen'' und ''unteren Kühltemperatur'' begrenzt wird. Die Lage dieser Temperaturen definiert sich nach der Viskosität, so ist die obere Kühltemperatur diejenige Temperatur bei der das Glas eine Viskosität von 1012 Pa·s besitzt. Bei der unteren Kühltemperatur liegt eine Viskosität 1013,5 Pa·s vor. In der Regel erstreckt sich der Kühlbereich, für die meisten kommerziell genutzten Gläser, zwischen 590?°C und 450?°C. Die Spannungen werden durch Tempern verringert, also durch definiertes langsames Abkühlen, da bei den hier vorherrschenden Viskositäten eine Spannungsrelaxation gerade noch möglich ist und bleibende Spannungen im Glaskörper vermieden werden.<ref name="Jebsen" />

Die Zeit, in der ein Glasgegenstand den Kühlbereich durchlaufen kann, hängt maßgeblich von der je nach Glasart zu überbrückenden Temperatur und der Stärke (Dicke) des Gegenstands ab. Im Hohlglasbereich sind dies zwischen 30 und 100?Minuten, bei großen optischen Linsen mit 1?m Durchmesser und mehr kann eine langsame Abkühlung von einem Jahr notwendig sein, um sichtbare Spannungen und somit Bildverzeichnungen der Linse zu vermeiden.<ref name="Jebsen" /> Die Kühlrate ist bei optischen Gläsern, nach der chemischen Zusammensetzung, der zweite wichtige Parameter zur Einstellung von Brechungsindex bzw. Dispersion und deshalb generell von besonderer Bedeutung im Produktionsprozess.

Es gibt zwei Arten von en. In der Praxis geschieht jedoch zumeist keine klare Abgrenzung zwischen diesen beiden Fällen, so wird beispielsweise das kontinuierlich betriebene Kühlaggregat in der Flachglasindustrie häufig als Rollenkühlofen bezeichnet.<ref name="Resch 122">Siegfried Rech: ''Glastechnik 1.'' 1. Auflage. S. 122 ff.</ref>

Kühlöfen eignen sich nur für Sonderfertigungen und Kleinstchargen, da nach jeder Entnahme der Werkstücke der Ofen wieder auf Temperatur gebracht werden muss. Industriell werden Kühlbahnen genutzt. In der Hohlglasindustrie erfolgt der Transport der Glasgegenstände auf Stahlmatten oder Kettenbändern durch die Kühlbahn, während das kontinuierliche Glasband in der Flachglasindustrie mittels Rollen durch die Kühlbahn transportiert wird.
Vor den Kühlbahnen (regional auch Kühlbänder genannt) wurden für mittlere Sortimente sogenannte Zugöfen verwendet. Nachdem der Zug im Ofen mit Gläsern gefüllt war, wurde der eine Wagen aus dem Ofen heraus- und ein leerer Wagen hereingefahren. Der heiße Wagen wurde mit isolierten Blechen verhängt und konnte langsam abkühlen, bevor er entleert wurde. Pro Schicht wurden meist drei Wagenwechsel Zu einer breiteren Verwendung kommt es mit der aufkommenden Gotik im 12. Jahrhundert.<ref name="Glastechnik 3 17">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 17 f.</ref>

Bei dem Mondglasverfahren, das bereits im vierten Jahrhundert im vorderen Orient belegt ist und später breite Anwendung in Frankreich fand, wird ein Glastropfen mit der Glasmacherpfeife zu einer Kugel vorgeblasen. Die heiße Glaskugel wird auf der gegenüberliegenden Seite an einem Metallstab befestigt, und die Glasmacherpfeife abgesprengt. Die Kugel hat nun ein Loch, dessen Ränder nach außen gestülpt werden. Zur weiteren Verarbeitung wurde die Kugel wieder auf Temperatur gebracht. Bei ca. 1000?°C war das Glas weich genug, um mittels Zentrifugalkraft in Tellerform geschleudert zu werden. Die Kugel öffnete sich um das Loch, an dem vorher die Pfeife befestigt war. Durch diese Technik wurden Glasplatten von ca. 1,20?m Durchmesser erzeugt. Anschließend wurde der äußere Rand zu Rechtecken geschnitten. Diese fanden Verwendung als z.?B. Kirchenglas mit Bleieinfassungen. Das Mittelstück mit der Anschlussstelle des Schleuderstabs heißt Butze und wurde für Butzenscheiben von 10 bis 15?cm Durchmesser verwendet.<ref name="Glastechnik 3 44">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 44 f.</ref>

Das Walzglasverfahren wurde zum ersten Mal 1688 in Saint-Gobain, der Keimzelle des heutigen gleichnamigen Weltkonzerns, dokumentiert. Geschmolzenes Glas wird auf den Walztisch gegossen, verteilt und schließlich gewalzt. Im Gegensatz zu den vorher genannten Verfahren wurde hier eine gleichmäßige Dicke erreicht. Auch waren erstmals Scheibengrößen von 40?×?60?Zoll möglich, was für die Produktion von Spiegeln genutzt wurde. Probleme bereitet jedoch die ungleichmäßige Oberfläche. Fensterglas dieses Herstellungsverfahrens ist oft blind und Spiegelglas nur durch aufwendiges kaltes Polieren zu erzielen.<ref name="Glastechnik 3 44" />

Industrialisierung und Automatisierung

Die Industrialisierung und Automatisierung der Glaserzeugung setzte schrittweise im 19. Jahrhundert ein. Zunächst wurden einzelne Verfahrensabschnitte optimiert. So wurden 1847 durch Joseph Magoun Metallformen in der Hohlglasproduktion eingeführt, welche die bis dahin hauptsächlich genutzten Holzformen ersetzten.<ref name="agr europe"></ref> 1856 entwickelte Friedrich Siemens den ersten Glasofen mit Regenerativfeuerung, was 1867 zum ersten kontinuierlichen Wannenofen ebenfalls durch Friedrich Siemens führte. Die regenerative Befeuerung ermöglichte erhebliche Energieeinsparungen und zugleich eine verbesserte Temperaturführung in der Glasschmelzwanne. Wenig später, im Jahr 1884, gründeten Ernst Abbe und Otto Schott in Jena ein Glaswerk für optische Spezialgläser.<ref name="Glastechnik 3 52">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Hohlglas.'' S. 52.</ref><ref name="schott">Geschichte der Schott AG. Abgerufen: 03/2013</ref>

Flachglas

Im Jahr 1905 entwickelte der Amerikaner John H. Lubbers ein Verfahren zur Flachglasherstellung, wobei er den manuellen Prozess des Zylinderblasverfahrens im industriellen Maßstab umzusetzen versuchte. Dabei wurden Zylinder direkt aus der Schmelz gezogen, diese konnten einen Durchmesser von 80?cm erreichen und waren bis zu 12?m hoch. Der Zylinder wurde anschließend aufgeschnitten und geplättet. Das Verfahren war jedoch sehr umständlich, insbesondere das Umlegen der Zylinder in die Horizontale bereitete Schwierigkeiten.<ref name="Glastechnik 3 52" />

Ein Patent zur verbesserten Flachglasproduktion sollte 1902 von Émile Fourcault folgen. Das nach ihm benannte ''Fourcault-Verfahren'' zur Ziehglasherstellung. Das Glas wird dabei kontinuierlich als Glastafel durch eine Düse aus der Schmelze senkrecht nach oben gezogen. Das Flachglas wurde somit ohne Umweg über einen Zylinder erzeugt. Nach dem Hochziehen durch einen senkrechten Kühlkanal auf ca. 8?m Höhe kann gekühltes Flachglas am oberen Ende zugeschnitten werden. Durch Variation der Ziehgeschwindigkeit konnte die Glasdicke eingestellt werden. Das Fourcault-Verfahren kam ab 1913 zum Einsatz und bedeutete eine große Verbesserung.<ref name="Glastechnik 3 54f">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 54 ff.</ref>

Ein ähnliches Verfahren ließ der Amerikaner Irving Wightman Colburn 1904 patentieren. Das Glasband wurde ebenfalls senkrecht aus der Schmelz gezogen, aber zur besseren Handhabung über eine Umlenkrolle in einen horizontalen Kühlkanal umgeleitet. Mit einer eigenen Fabrik wurde bis 1912 versucht, das Verfahren zu beherrschen, blieb aber letztlich erfolglos, so dass Insolvenz angemeldet wurde. Das Patent ging an die Toledo Glass Company. 1917 kam das nunmehr sogenannte Libbeys-Owens-Verfahren zur industriellen Anwendung. Die Vorteile gegenüber dem Fourcault-Verfahren lagen in der einfacheren Kühlung. Hingegen konnten bei jenem mehrere Ziehmaschinen an einer Glasschmelzwanne arbeiten. Da der Kühlofen beliebig lang sein konnte, erreichte dieses Verfahren etwa die doppelte Produktionsgeschwindigkeit. In der Folgezeit existierten beide Verfahren parallel. 1925 verbesserte die Plate Glass Company die Vorteile der Verfahren von Fourcault und Colburn; sie erzielte mit dem Pittsburg-Verfahren dadurch eine deutliche Steigerung der Produktionsgeschwindigkeit.<ref name="Glastechnik 3 60">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 60 ff.</ref><ref name="Glastechnik 158">Siegfried Rech: ''Glastechnik .'' S. 158 ff.</ref>

Dem Deutschen Max Bicheroux gelang 1919 der entscheidende Schritt bei der Gussglasherstellung. Im Gegensatz zu den bisher genannten Verfahren wurde hier keine Glastafel aus der Schmelze gezogen, sondern die flüssige Glasmasse wurde dabei zwischen gekühlten Walzen zu einem Glasband geformt. Im noch erwärmten Zustand wurde das Glasband zu Tafeln geschnitten und in Öfen abgekühlt. Mit diesem Verfahren konnten Scheiben bis zu 4,5?m Breite hergestellt werden. Ein ähnliches Verfahren wurde 1921 von Pilkington und dem Fahrzeugfabrikanten Ford zur kontinuierlichen Herstellung von Automobilglas als Walzglas entwickelt. Dieses Verfahren lieferte allerdings geringere Breiten als das von Bicheroux.<ref name="Glastechnik 3 40">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 40 f.</ref>

Die Firma Pilkington bewältigte in den 1960er Jahren als erste die technischen Probleme der Floatglasfertigung, wobei die Glasschmelze auf ein Bad aus flüssigem Zinn gegossen wurde. Dieses Prinzip revolutionierte die Flachglasfertigung, da es eine sehr hohe Produktivität aufwies und die Spiegelglasherstellung ohne weitere Nachbearbeitungsschritte ermöglichte. In den 1970er Jahren wurde dieses Verfahren allgemeiner Standard und verdrängte die Übrigen nahezu vollkommen. Das Verfahren basiert auf einer Idee von Henry Bessemer, die William E. Heal bereits 1902 zum Patent angemeldet hatte.<ref name="Glastechnik 3 64f">Helmut A. Schaeffer: ''Glastechnik ? Band 3, Flachglas.'' S. 64 ff.</ref>

Hohlglas

Im frühen 19. Jahrhundert wurden neue mechanische Hilfsmittel zum Blasen der Gläser benutzt. Es wurden Formen benutzt, die ein zu erzeugendes Relief als Negativ aufwiesen. Durch den Blasdruck wird das Glas an die Form gedrückt und das Werkstück erhält so seine Gestalt. Allerdings ist die Lungenkraft des Glasmachers nicht ausreichend hoch für tiefere Reliefs, so dass mechanische Hilfsmittel eingeführt wurden. Durch den Einsatz von Luftpumpen wurde genügend Druck erzielt.

Eine weitere Neuerung in der Mitte des 19. Jahrhunderts war die Einführung von Metallformen. Erstmals 1847 ersetzten die von Joseph Magoun entwickelten Formen die alten aus Holz, was deren Haltbarkeit beträchtlich erhöhte.

Die erste halbautomatische Flaschenblasmaschine entwickelten die Briten Alexander Mein und Howard M. Ashley in Pittsburg im Jahr 1859. Doch noch immer waren manuelle Arbeitsschritte vonnöten.

Ein Meilenstein war die 1903 von Michael Joseph Owens eingeführte Owens-Maschine als erste vollautomatische Glasmaschine überhaupt. In einem in der Schmelze eingetauchten Speiser wird ein Vakuum erzeugt und so die benötigte schmelzflüssige Glasmenge exakt aufgenommen. Der Arm des Speisers schwenkt zurück und drückt den Tropfen in die Form. Mit Pressluft wird der Tropfen in die Metallform geblasen und das Werkstück erhält seine endgültige Gestalt. Diese Technik heißt ''Saug-Blas-Verfahren''. Damit war es möglich, die zu dieser Zeit enorme Menge von vier Flaschen pro Minute zu produzieren.

Trotz dieser Errungenschaft blieben maschinell geblasene Flaschen noch viele Jahre schwerer als mundgeblasene. Um die Glasmacher zu übertreffen, mussten die Maschinen noch sehr viel genauer arbeiten. So ist auch zu erklären, dass die verschiedenen Produktionsverfahren noch lange parallel betrieben wurden.

Wesentliche Verbesserungen der Tropfenentnahme durch den Tropfenspeiser von Karl E.?Pfeiffer im Jahre 1911 führten ebenfalls zu einer Steigerung der Produktivität. Die Portionierung der Glasmasse erfolgte nicht mehr durch Abschöpfen oder Saugen einer Menge Glas von der blanken Schmelzoberfläche, sondern indem ein Tropfen durch eine Öffnung am Ende des Feeders (Speiserkanals) abläuft. Durch die genauer mögliche Dosierung der Glasmenge konnten gleichmäßigere Flaschen gefertigt werden.

1924 wurde die IS-Maschine von den Namensgebern Ingle und Smith patentiert, die erste industrielle Anwendung folgte wenige Jahre später. Diese Maschine, die die Vorteile des Tropfen-Verfahrens erst richtig nutzt, arbeitet nach dem Blas-Blas-Verfahren. Ein Tropfen wird in eine Metallform geleitet und vorgeblasen. Der vorgeformte Tropfen wird in eine zweite Form geschwenkt, in der das Werkstück fertig geblasen wird.

Erste Anwendungen des neuen Verfahrens folgten wenige Jahre später. Die erste Maschine von 1927 hatte vier Stationen: Ein Feeder beschickte eine Maschine und diese konnte parallel vier Flaschen fertigen. Das Prinzip des Blas-Blas-Verfahrens ist auch heute noch in der Massenfabrikation gültig.

Rohrglas

Glasrohre wurden bis ins 19. Jahrhundert ebenfalls (mundgeblasen) ausschließlich diskontinuierlich aus einer Charge oder einem Glasposten hergestellt. Die industriellen Prozesse zur Glasrohrerzeugung werden in Verfahren mit rotierender Pfeife und Ziehverfahren mit Düsen unterteilt. Letztere können weiter unterteilt werden in Varianten, bei denen das Glasrohr senkrecht nach unten oder oben aus der Schmelze gezogen wird. 1912 entwickelte E. Danner (''Libbey Glass Company'') in den USA das erste kontinuierliche Röhrenziehverfahren, worauf 1917 ein Patent erteilt wurde.<ref name="Giegerich 341f">W. Giegerich, W. Trier: ''Glasmaschinen.'' S.?341ff.</ref>

Beim Danner-Verfahren fließt eine Glasschmelze als Band auf einen schräg nach unten geneigten, rotierenden keramischen Hohlzylinder ? die ''Dannerpfeife''. Nach Zuführung von Druckluft über das Innere der Pfeife gelingt das Abziehen des sich bildenden Glasrohres in Richtung der Pfeifenachse. Die Ziehgeschwindigkeit des Rohrs sowie Höhe des Drucks der zugeführten Luft bestimmen hierbei die Rohrdimension.<ref name="Giegerich 341f" />

In Frankreich wurde 1929 von L. Sanches-Vello ein vertikales Ziehverfahren ausgearbeitet. Dabei handelt es sich um ein senkrechtes Rohrziehverfahren. Die Schmelze wird durch eine Düse im Boden der Schmelzwanne nach unten gezogen und kurz darauf in die Horizontale umgeleitet.

Für die Produktion von Rohrglas existieren eine Reihe weiterer Verfahren, die aber alle nach sehr ähnlichen Prinzipien arbeiten.<ref name="Giegerich 341" /><ref name="Giegerich 341?356">W. Giegerich, W. Trier: ''Glasmaschinen.'' S. 341?356.</ref>

Märkte für Glas

Glas ist ein vielseitiges Material, das in vielen Bereichen des täglichen Lebens zum Einsatz kommt. So spielt Glas eine wichtige Rolle in Forschung und Wissenschaft, in der modernen Architektur sowie in Zukunftsbranchen. Kernbereiche, in denen Glas eingesetzt wird, sind: Bauindustrie, Ernährungs- und Getränkeindustrie, Kraftfahrzeugindustrie, Elektro(nik)industrie, Haushalt und Gastronomie, Medizin, Forschung und Wissenschaft, Chemie, Pharmazie, Kosmetik, Möbelindustrie und Innenausbau, Kunststoff- und Textilindustrie.

Kunsthandwerk und Glaskunst

Ägypten

Das Glashandwerk im pharaonischen Ägypten lässt sich bis an den Beginn der 18. Dynastie zurückverfolgen; zunächst handelt es sich dabei um Kleinfunde wie Perlen, Amulette oder Kettenglieder sowie farbigen Einlagen in den typischen ägyptischen Schmuckobjekten (z.?B. Pektorale). Diese sind meist in Türkis oder Dunkelblau gehalten, da sie solche Objekte aus Lapislazuli oder Türkis imitieren sollten; dies galt nicht als ''billiger Schmuck'', sondern die Imitation dieser edlen, hoch machtgeladenen Steine galt als besondere ''Kunst''. Das Verfahren war für die damalige Zeit sehr aufwändig und man arbeitete solche Kleinfunde aus Rohglasstücken, ganz und gar vergleichbar mit solchen aus Stein. Dafür spricht auch, dass ein ägyptisches Wort für ?Glas? so nicht existierte; es hieß ''künstliches Lapislazuli'' bzw. ''künstliches Türkis'' im Gegensatz zum wahren/echten Türkis bzw. Lapislazuli.
In der ''Ersten ägyptischen Glaskunstblüte'' (18. bis 20.?Dynastie) traten stabgeformte Gefäße auf (die auch kerngeformt genannt werden, nach der ''Sandkerntechnik''). Sie gehen auf Vorbilder zeitgenössischer Gefäße, insbesondere solchen aus Stein, zurück. Als Dekor entstanden Fadenverzierungen in Zickzack- oder Girlandenform in Gelb, Weiß, und Hellblau sowie tordierte Fäden im Hell-Dunkel-Kontrast, manchmal wurden sie auch monochrom belassen und nur die Henkel oder Schulterumbrüche durch Fadenzier betont. Die ägyptischen Glasgefäße dienten der Aufbewahrung von Kosmetika wie Salben, Ölen, Parfümen und Augenschminke. Das stark gefärbte, undurchsichtige Glas wirkte konservierend.

In der Spätzeit (ab der 3. Zwischenzeit bis zur Griechischen Epoche) blieb das Hohlglashandwerk unterrepräsentiert, nur gelegentlich kamen Hohlgläser vor, weiterhin in Form von kleinen meist unverzierten Salbgefäßen. Dagegen waren Glaseinlagen in Schmuck oder Figuren nicht selten und wurden wie zuvor den Edelsteinen gleichrangig behandelt.
In der hellenistischen Zeit gewann die Glasproduktion wieder an Bedeutung, auch in Ägypten. Zusammen mit neuen Herstellungstechniken trat eine völlig neue Formenwelt auf, ist aber nicht für Ägypten, sondern eher zeittypisch. Bereits im 5.?Jahrhundert v.?Chr. hatte sich Rhodos als wichtiges Zentrum der Glasherstellung etabliert. Neben Intarsien und Perlen fanden sich nun vielfarbige Mosaikschalen und die Gefäße der ''Canossa-Gruppe''.

Römisches Reich

Im 1. Jahrhundert stieg die Glasproduktion derart, dass das vormals rare und teure Material für weite Kreise erschwinglich wurde. Eine umfangreiche Produktion von Trinkgefäßen, Krügen, Schalen und Tellern setzte ein, anfangs meist manuell geformt oder abgesenkt, dann zunehmend mundgeblasen.
Eine Vielzahl hochwertiger Spezialgläser beweist handwerkliche Meisterschaft, so die Mosaik-Fadengläser, Kameogläser, Goldfoliengläser, Gläser mit Emailmalerei und besonders die Diatretgläser, meist glockenförmige, prunkvolle Leuchtgefäße in Netzglastechnik, die bis heute wegen ihrer künstlerischen Qualität bewundert werden. Eines der berühmtesten römischen Gläser ist der im Besitz des Britischen Museums befindliche ''Lykurgosbecher'' aus dem 4.?Jahrhundert, an dem eine dreidimensionale figurative Darstellung angebracht ist, die im Gegenlicht rot und im Auflicht opak-gelbgrün erscheint.

Venezianisches Glas

Venedig wurde ab der ersten Hälfte des 16.?Jahrhunderts für sein farbloses, dünnwandiges und fein elaboriertes ''cristallo'' bekannt. Aus der Zeit davor ist nichts, aus dem 16. und 17.?Jahrhundert nur noch wenig erhalten. Über die Variationsbreite der venezianischen Renaissance-Gläser, ihre Formen und Dekore geben vor allem niederländische und flämische Stillleben Auskunft. Es handelt sich größtenteils um Becher, Schalen, Kannen und Flaschen, die aus hohl geblasenen Balustern zusammengesetzte Schäfte mit flachen Füßen hatten. Diese Schäfte wurden in der Folgezeit immer ausgeklügelter, Flügel wurden in phantasievollen Ornamenten und figürlichen Dekorationen angesetzt, manchmal war auch der Schaft in figürlicher, beispielsweise in Tiergestalt ausgeführt.

Für die Wandung gab es besondere Veredelungstechniken. Beim ''Eisglas'', hergestellt durch Abschrecken in eiskaltem Wasser oder durch Rollen über kleine Splitter, wird auf der Oberfläche ein Effekt wie bei einem durch Eisblumen überzogenen Fensterglas erzielt. Beim ''Faden- oder Netzglas'' () ? wurden Milchglas-Fäden in die klare Glasmasse eingeschmolzen und durch Drehen so verwoben, dass ein faden- bzw. netzartiges Muster entstand. Diese Technik war in Ansätzen schon in der Antike bekannt.

Als Glas à la façon de Venise fand der venezianische Stil trotz aller Versuche der Republik Venedig, ihre Kunst geheim zu halten, Zugang in die Länder nördlich der Alpen.

Schmucktechniken im Barock und Rokoko

Barockes Schnittglas (und Rokoko-Glas) vornehmlich aus Böhmen und Schlesien, aber auch Nürnberg, Brandenburg und Sachsen, seltener Thüringen, Hessen, Norddeutschland und den Niederlanden lief ab dem 18.?Jahrhundert venezianischem Glas den Rang ab, da deren Glas für den Glasschnitt und Glasschliff aufgrund seiner Dünnwandigkeit nicht geeignet war.

Die Formen mit Fuß, Baluster-Schaft und dünnwandiger Kuppa ähnelten dem farblosen venezianischen Glas, jedoch ohne Flügel und wiesen eine stärkere Wandung auf. In Potsdam, Schlesien, Böhmen, Kassel und anderen Gebieten experimentierte man mit den Rezepten von Glas, um eine Masse herzustellen, die den Schliff und Schnitt erlaubte. Die Themen des Schnittes waren vielseitig. Jagdszenen waren häufig, Landschaften, aber auch allegorische Figuren mit Beischriften, Blumen- und Blattornamente sowie zeitgenössische Persönlichkeiten und Schlachtenszenen.

Bereits im 17.?Jahrhundert signierten Glasschneider vereinzelt ihre Werke und auch aus dem 18.?Jahrhundert sind Glasschneider bekannt, etwa: Christian Gottfried Schneider und Friedrich Winter prägten den Glasschnitt Schlesiens wie Martin Winter und Gottfried Spiller denjenigen von Potsdam, Johann Christoph Kießling arbeitete für August den Starken, Franz Gondelach stand im Dienst des Landgrafen Carl von Hessen und David Wolff arbeitete in den Niederlanden.

Gelegentlich weisen die barocken Schnittgläser Vergoldungen an Fuß, Schaft oder am Lippenrand auf. Im 18.?Jahrhundert waren auch die Zwischengoldgläser beliebt. Für deren Herstellung wurden zwei Gläser verwendet, wobei eines passgenau in das Zweite, daher größere Glas, passte. Auf die Außenwand des inneren Glases wurde eine Goldfolie aufgelegt und mit einer Radiernadel Motive darin eingeritzt. Dann wurde es in das zweite Glas eingepasst und weiterverarbeitet.

Von der Porzellanmalerei her kam die Technik der Schwarzlotmalerei, die in anderem Zusammenhang bereits im Mittelalter bekannt war. Johann Schaper und Ignaz Preissler prägten diese Kunst in Nürnberg und Schlesien, Böhmen und Sachsen.

Eine rurale Veredelungstechnik barocken Glases ist die , was diese Technik in die Nähe der Porzellanmalerei rückt.

Biedermeierglas

Die Engländer übernahmen im 18. Jahrhundert die Arten und Formen der böhmischen Gläser und beherrschten mit Hilfe der Reinheit ihres Bleikristalls, dessen hervorragende lichtbrechende Eigenschaften durch den Brillantschliff wirkungsvoll zur Geltung kamen, Anfang des 19. Jahrhunderts schließlich den zu der Zeit von klassizistischen Geschmacksvorstellungen geprägten Markt. Um den Vorsprung der Engländer wettzumachen, bemühten sich die böhmischen Glasfabrikanten um größere Reinheit ihres bleifreien Kristallglases. Zugleich nutzten sie alle Möglichkeiten des Musterschliffes für abwechslungsreiche Dekore und versuchten vor allem auch, billiger zu produzieren. Das Ergebnis dieser Anstrengungen lässt sich an den meisterlich geschliffenen Biedermeiergläsern ablesen, die als bewundernswerte Beispiele kunsthandwerklichen Glasschliffs gelten.

In den 1830ern erreichte der Biedermeierstil seinen Höhepunkt. Um Produktion und Absatz auszuweiten, bereicherten die Glashütten nach 1840 ihr Angebot mit dem neuentwickelten Farbglas und verdrängten damit das farblose Glas mehr und mehr vom Markt. Besonders die nordböhmischen Glashütten gestalteten ihre Gläser in immer wirkungsvollerer Farbigkeit. Im Zuge dieser Entwicklung verlor jedoch der Glasschliff gegenüber der Buntheit der Dekore an Bedeutung, Form und Schliff wurden nicht zuletzt aus Kostengründen zunehmend einfacher.

Die Mannigfaltigkeit der aus Farbglas und überfangenem bzw. gebeiztem (siehe Rotbeize) Kristallglas mit Schnittdekor sowie aus Steinglas (Lithyalinglas und Hyalithglas, das mit Gold, Email- und Transparentfarben bemalt wurde) hergestellten Produkte erreichte schließlich ein bis dahin nicht gekanntes Ausmaß. Gängig waren zum Beispiel Trinkgläser und Karaffen aus buntem Glas, ganze Likör- und Dessertservice, Garnituren für Kommoden und Waschtische, Schreibzeuge und Parfümflakons, Schalen, Teller, Tafelaufsätze, und vor allem Vasen. Hinzu kamen die unzähligen Andenken- und Freundschaftsgläser, Dekorations- und Ehrenpokale, außerdem Exportartikel wie Wasserpfeifen und Sprenggefäße für Rosenwasser.

Jugendstilglas

Um 1900 waren sich die Gestalter der jungen Generation einig in ihrer Abkehr vom überkommenen Historismus. Für das daraus resultierende kunstgewerbliche Streben nach neuen, frischen, originellen Ausdrucksformen auf der Basis alter handwerklicher Techniken bürgerte sich im deutschsprachigen Raum, den Niederlanden und den Nordischen Ländern der Begriff Jugendstil ein, während sonst die Bezeichnung ''Art nouveau'' gebräuchlich ist. Die Fantasie der Jugendstil-Künstler wurde vor allem von der Farben- und Formenwelt des fernen Ostens beflügelt. So sind die wesentlichen Teile oder Elemente des Jugendstils durch dekorativ geschwungene Linien sowie flächenhafte florale Ornamente und Asymmetrie gekennzeichnet.

Glas nahm in der Entwicklung des Jugendstils eine zentrale Rolle ein. Der Grund dafür ist in den gestalterischen Möglichkeiten zu suchen, die dem angestrebten organischen Wesen der Formgebung entgegenkamen. Die Zusammenarbeit von Designern und Handwerkern brachte fantasievolles, in limitierten Auflagen von Hand hergestelltes Atelierglas hervor, das durch die Vielfalt der Farbeffekte besticht. Französische Glasmacher wie Emile Gallé und die Daum Frères schufen geschnittenes und geätztes Überfangglas in kräftigen Farben. Das böhmische Jugendstilglas hat seinen guten Ruf vor allem Max Ritter von Spaun, Besitzer der Firma Joh. Loetz Witwe in Klostermühle in Böhmen, zu verdanken. Von jenseits des Großen Teiches, aus New York, kamen das irisierende Glas und die berühmten, in Europa als beispielhaft angesehenen Kreationen von Louis Comfort Tiffany.

Der konstruktive Stil, der bestrebt war, alle Formen mit Hilfe einfachster Gebilde wie Quadrat, Rechteck, Kreis und Ellipse zu gestalten und starke Farbgegensätze zu verwenden, wurde am konsequentesten von der Wiener Schule verfolgt. Ihre führenden Repräsentanten waren Josef Hoffmann und Koloman Moser.

Mit den wachsenden wirtschaftlichen Schwierigkeiten in der Zeit des Ersten Weltkrieges ging die Ära des Jugendstils zu Ende. Sie währte knapp zwanzig Jahre, ihre Auswirkungen sind jedoch weiterhin spürbar.

Fusing

Beim Fusing (dt. Verschmelzung) oder Fusen (neudeutsch für Glasverschmelzung) werden verschiedene (weiße oder farbige, eventuell mit Glasschmelzfarbe bemalte) Glasstücke bei 780?900?°C miteinander verschmolzen. Die Schmelztemperatur ist von Zusammensetzung und Dicke der Gläser abhängig. Temperaturbeständige Gegenstände, wie etwa Metalle, können mit eingeschmolzen werden.

Fusing ist in seinen Grundlagen, nach bisherigem archäologischem Wissensstand, ein mindestens 2200 Jahre altes Glasverarbeitungsverfahren. In den letzten Jahrzehnten wurde es zu einer der vielseitigsten und technisch anspruchsvollsten Glasverarbeitungstechniken weiterentwickelt. Viele -Technik), großen künstlerisch gestalteten Fenstern und anderen Glaselementen in Architektur und Innenarchitektur.

Folgende Grundvarianten des Fusing werden unterschieden:
  1. Relief (engl. ''tack fuse'')
  2. Vollverschmelzung (engl. ''full fuse'')
  3. Glasfluss (franz. ''Pâte de verre''), Glaspaste wird in Form geschmolzen.

Konventionell handwerklich kann Fusing folgendermaßen ablaufen: Aus verschiedenfarbigen Glasplatten werden passende Teile mit einer besonderen Zange abgezwickt oder mit einem Glasschneider abgeschnitten. Die Glasstücke setzt der Glaskünstler dem Entwurf entsprechend zusammen, beispielsweise als Muster für den Rahmen eines Spiegels oder für die Herstellung einer Glasschüssel. Zwischenräume werden oft mit Glaspulver aus zerstampften Glasplatten ausgefüllt. Nun werden die Stücke in einem Glasfusingofen verschmolzen. Die Temperaturen werden so gewählt, dass das Glas noch nicht als Flüssigkeit verläuft, alle Glasteile und Partikel aber eine dauerhafte Verbindung eingehen. Bei entsprechender Temperaturführung kann ein vollkommen geschlossener und harter Glaskörper hergestellt werden. Dieser Brennvorgang dauert, abhängig von Dicke und Durchmesser des Glases, etwa 18 bis 22?Stunden.

Der Glaskörper wird zunächst zu einer flachen Platte verschmolzen, die bei Bedarf in einem zweiten Arbeitsgang in einem Glasschmelzofen weiter geformt wird, z.?B. wenn daraus eine Glasschüssel entstehen soll. Dazu werden Trägerformen oder Modelle verwendet, die oft aus Ton oder unglasierter Keramik bestehen. In konkave Modelle kann sich die erhitzte Glasplatte absenken und über konvexe Modelle kann sie sich aufbiegen. Die Form muss etwas größer als die Glasplatte sein, da Glas sich bei Erwärmung ausdehnt und beim Abkühlen zusammenzieht. Auf die entstandenen Objekte können nach dem Abkühlen Glasveredelungstechniken angewendet werden: Gravieren, Glasmalen, Schleifen, Sandstrahlen oder Ätzen.

Eine fortgeschrittene Anwendung des Verfahrens ist die Herstellung großer selbsttragender Glasscheiben oder Glasobjekte, die beispielsweise als Gegenwartskunst oder als Kirchenkunst künstlerisch kontrolliert gestaltet werden können. Dafür werden auch industriell hergestellte Glasbruchstücke (Fritten) und Glaspulver aus farblosen und farbigen Gläsern verwendet.

Die Herstellung derartiger ''Fusing-Stücke'' setzt künstlerisches Talent und die Kenntnis der Verfahrenstricks voraus. So müssen die zusammengeschmolzenen Gläser den gleichen Ausdehnungskoeffizienten (AKW) haben und die Erhitzung und Abkühlung des Glases muss genau kontrolliert bestimmten Temperaturkurven folgen. Andernfalls können im Glas mechanische Spannungen entstehen, die es zerreißen oder zerspringen lassen. Große Fusing-Stücke können daher nur in einem Flachbett in digital gesteuerten Brennöfen hergestellt werden.

Besonders fortgeschrittene Glaskünstler verwenden Glasöfen der Bauart ''Glory Hole'', weil sie es gestatten, kleinere Glasmassen direkt in verschiedenen angeschmolzenen oder nahezu flüssigen Zuständen künstlerisch zu bearbeiten. Glas wird dabei immer wieder für einen neuen Arbeitsgang durch das Loch in der Ofenwand gehalten und aufgeheizt, um es dann außerhalb des Ofens bearbeiten zu können.

Zur ebenso direkten Bearbeitung dienen Öfen mit ausziehbarem Flachbett. Das im Flachbett liegende Glas wird auf Bearbeitungstemperatur gebracht und dann für kurze Zeit aus dem Ofen hervorgezogen. Unter Beachtung der richtigen Verfahren und Vorsichtsmaßnahmen werden dann beispielsweise Chemikalien, Metallstaub oder farbige Glaspulver auf das angeschmolzene oder geschmolzene Glas gebracht. Besondere Kenntnisse setzt es voraus, mit Werkzeugen direkt gestalterisch in diese Glasmasse einzugreifen.

Eine weitere neue Variante ist die Pàte-de-Verre-Herstellung großformatiger Glasplastiken.

Siehe auch

Glasarten und Verwandtes

Herstellung

Medizin

Spezifika

Sonstiges

Literatur

Glaschemie

  • G.H. Frischat: ''Glas ? Struktur und Eigenschaften,'' Chemie in unserer Zeit, 11. Jahrg. 1977, Nr. 3, S. 65?74,

Glasherstellung und Glastechnik

  • Jürgen Dispan (2013): Glasindustrie in Deutschland. Branchenreport 2013. Stuttgart (= IMU-Informationsdienst Nr. 3-2013). Link zur Branchenstudie

Geschichte der Glasherstellung

  • Heinrich Maurach: ''Glas als Wort und Begriff.'' In: ''Glastechnische Berichte'' 25, 1952, S. 1?12.

Kunsthandwerk und Glaskunst

Restaurierungen historischen Glases

  • ''Glas'' in: , Hameln: Niemeyer, 1989, ISBN 3-87585-152-8, S. 405?424

Weblinks

Einzelnachweise und Fußnoten

<references responsive />